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The solid-liquid phase equilibria of the Gaussian core model are determined using the GWTS �J. Ge,
G.-W. Wu, B. D. Todd, and R. J. Sadus, J. Chem. Phys. 119, 11017 �2003�� algorithm, which
combines equilibrium and nonequilibrium molecular dynamics simulations. This is the first reported
use of the GWTS algorithm for a fluid system displaying a reentrant melting scenario. Using the
GWTS algorithm, the phase envelope of the Gaussian core model can be calculated more precisely
than previously possible. The results for the low-density and the high-density �reentrant melting�
sides of the solid state are in good agreement with those obtained by Monte Carlo simulations in
conjunction with calculations of the solid free energies. The common point on the Gaussian core
envelope, where equal-density solid and liquid phases are in coexistence, could be determined with
high precision. © 2009 American Institute of Physics. �doi:10.1063/1.3256004�

I. INTRODUCTION

Determining the solid-liquid phase transition via mo-
lecular simulation remains a considerable challenge. The
most commonly used options are thermodynamic integration
methods1 based on the evaluation of free energies; Gibbs
ensemble simulation,2,3 which requires particle interchanges
between two dense phases, and Gibbs–Duhem integration
�GDI�.4 In particular, GDI is a very useful method for study-
ing solid-liquid phase transitions because it avoids the issue
of particle interchanges between phases. However, GDI re-
quires a priori knowledge of a pair of coexistence points to
start the algorithm, and the accuracy of the starting condi-
tions is of great importance for its success. The solid-liquid
transition can be calculated from direct simulation of an in-
homogeneous system formed from liquid and solid phases
separated by an interface. However, as noted recently
elsewhere,5 very long simulation times are sometimes re-
quired to obtain reliable results, which also places a compu-
tational restriction on the number of particles that can be
feasibly simulated.

An alternative to these conventional approaches was in-
troduced by Ge et al.6 using a combination of equilibrium
molecular dynamics �EMD� and nonequilibrium molecular
dynamics �NEMD� simulation methods.3 We will use the
designation “GWTS” �after the first letter of the surnames of
the authors� to refer to this algorithm. The GWTS algorithm
allows for an efficient localization of the freezing point �fp�
by applying small strain rates to the system. A change in the
strain-rate dependent pressure as a function of density indi-
cates the occurrence of the fp. The coexisting melting point
�mp� can be easily obtained from an isobaric connection of
the fp to the solid branch. The fast and accurate determina-
tion of the solid-liquid transition at equilibrium for a one-
component Lennard-Jones system has been demonstrated.6

The GWTS algorithm provides a powerful alternative to
other simulation techniques1–4 because it is both self-starting
and it does not require particle interchanges between the
dense liquid and solid phases.

The aim of this study is to apply the GWTS algorithm6

to accurately determine solid-liquid equilibria of the Gauss-
ian core model �GCM� fluid. The GCM system displays a
complex thermodynamic melting scenario, the so-called re-
entrant melting, where the solid remelts into a stable high-
density liquid. For temperatures lower than a maximum
melting temperature Tmax, a liquid-solid-liquid sequence of
phases can be observed when increasing the density. This
behavior has been observed in the phase diagram of elements
such as barium, caesium, carbon, and phosphorus.7 Further-
more, the GCM is a bounded, solely repulsive interaction
potential, which has been used to describe properties of soft
materials.8 For example, the GCM provides a reliable quali-
tative description of the thermal behavior of interpenetrable
globular polymers.

In the past, different approaches have been applied to
observe the topology of the GCM phase diagram.9–11 Cur-
rently, the most accurate simulation results were reported by
Prestipino et al.12 using Monte Carlo simulations in conjunc-
tion with calculations of the solid free energies. Compared
with the results reported by Prestipino et al.,12 the one-phase
entropy criterion11 underestimates Tmax by approximately
30%. In contrast, the approach used by Lang et al.10 yields a
value of Tmax that is approximately 10% higher than reported
by Prestipino et al.12 Furthermore, the calculations reported
by Prestipino et al.12 lead to a partially modified phase dia-
gram for the face centered cubic-body centered cubic �fcc-
bcc� solid transition compared with previous calculations.9,10

To the best of our knowledge, the successful use of direct
coexistence methods for GCM-like fluids has not been re-
ported. In view of these considerations, the GCM fluid pro-
vides a severe test for the GWTS algorithm. It should bea�Electronic mail: rsadus@swin.edu.au.
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noted that because the GWTS algorithm uses liquid state
simulation methods, it can not be used to determine solid-
solid transitions.

II. SIMULATION METHOD

A. Brief overview of the GWTS algorithm

Conducting standard EMD simulations close to the
solid-liquid phase boundary allows an extension of the stable
liquid and the stable solid line into the metastable two-phase
solid-liquid region of the system. This effect, known as a van
der Waals loop, makes it difficult to determine the exact lo-
cation of the phase transition. However, when the system
enters the two-phase liquid-solid region from the liquid side
the equilibrium pressure drops considerably. In principle, one
could use the drop in the equilibrium pressure to determine
the freezing transition of the system. However, such an ap-
proach would not work for systems like the GCM, which do
not exhibit any significant difference in pressure. The GWTS
algorithm6 utilizes the fact that a small strain rate applied to
a system disturbs its two-phase state. By conducting addi-
tional NEMD simulations at low strain rates and analyzing
the strain-rate dependent pressure, it is relatively easy to de-
termine whether the system is in the single liquid phase, the
two-phase state, or the solid phase. The entry into the two-
phase liquid-solid region is clearly identified by a sudden
change in the pressure at zero strain rate, whereas the pres-
sure at �̇�0 remains almost linear with increasing �̇. As
discussed by Ge et al.6 this is an entirely empirical observa-
tion. However, the large drop in pressure can be attributed to
the sensitivity of the NEMD symmetric and asymmetric
pressure tensors to changes in the structure of the fluid at the
freezing transition. Once the fp has been determined in this
way, it is straightforward to determine the mp by extending
an isobaric tie line from the fp to the solid branch curve.
Starting in the liquid phase, increasing the density at constant
temperature in incremental amounts of �� �the situation
when reentrant melting occurs will be discussed later� deter-
mines the equilibrium coexistence of the solid-liquid phase
transition with an accuracy of ��. In contrast to direct coex-
istence methods,5 the absence of a physical interface means
that computational difficulties3 at the interfacial region are
avoided.

B. Simulation details

In this study the interaction between particles is de-
scribed by a potential with a Gaussian core �GC� shape, i.e.,

u�r� = � exp�− � r

�
�2� , �1�

where � is the length scale and � is the energy scale of the
model. All the results are given in a system of reduced GC
units that is natural for the model.13–15 In particular, we re-
port density ���=��3�, temperature �T�=kT /��, pressure
�p�= p�3 /��, strain-rate ��̇�= �̇	m�2 /��, and time ���

=�	� /m�2� in terms of these reduced quantities. The asterisk
superscript will be omitted in the rest of this study.

Homogeneous NEMD simulations were conducted by

applying the standard sllod equations16 of motion and a
Gaussian thermostat17 was used to constrain the kinetic tem-
perature. The equations of motion were integrated with a
five-value Gear predictor-corrector scheme3,18 with a time
step of �=0.005 and a cutoff radius for the potential of 3.2�.
We used three different strain rates at �̇=0.0 �EMD simula-
tion�, �̇=0.001, and �̇=0.002 �NEMD simulations�. For each
state point �� ,T , �̇� simulation trajectories were made for a
length of 8�105�. Periods of 3�105� of each trajectory
were used either to equilibrate zero-shearing field EMD or to
achieve nonequilibrium steady state after the shearing field
was switched on. The remaining time periods were used to
accumulate the average values of thermodynamic variables.
We used 2048 GC particles for all simulations reported in
this work. Near the solid-liquid transition we used very small
density increments ��=10−4 in order to sample the ex-
tremely small two-phase liquid-solid region of the GCM
with high accuracy.

C. System size analysis

Simulation of phase transitions might be sensitive to the
system size of a fluid. Therefore, we performed separate
simulation runs to analyze the dependency of the simulation
results on the particle number. In particular, we calculated
the fp on the low-density side of the solid region of the GCM
for a single temperature at T=0.006. We analyzed the occur-
rence of the fp for system sizes of N=256, 864, 2048, 4000,
6912, and 10 976 particles �Table I�. The average freezing
density calculated from Table I is 0.129 983	0.000 492
within a 95% confidence interval. The freezing density ob-
tained for N=2048 fits fairly well within the average density,
which suggests that this number of particles is a good choice
for the purpose of our study.

III. RESULTS AND DISCUSSION

A. Low-density side of the solid region

On the low-density side of the solid state the GCM fluid
behaves as a “normal” liquid.13 In Fig. 1 we show a typical
result of our simulation in this density region for a tempera-
ture of T=0.006. The strain-rate dependent pressure is shown
in Fig. 1�a� for a density range of �=0.1296–0.1305 in steps
of ��=10−4. Up to a density of 0.1299 the system is still in
the liquid state because the pressure is nearly constant for all
three strain rates. Increasing the density to 0.13 results in a
sudden drop in the pressure at zero strain rate. For densities
�
0.13 the equilibrium pressures are even lower than those

TABLE I. System size dependency of the freezing density of the GCM fluid
at T=0.006 obtained using the GWTS algorithm.

N �

256 0.1309
864 0.1291

2048 0.1299
4000 0.1299
6912 0.1304

10 976 0.1297
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for ��0.1296. This indicates the entry into the two-phase
solid-liquid region, i.e., the fp. To determine the mp we plot
the results in the pressure-density plane in Fig. 1�b�. The
curves for strain rates at �̇=0.0, 0.001, and 0.002 nearly lie
on top of each other in the liquid branch. A dashed arrow
marks the drop in the equilibrium pressure starting at fp. The
pressures for strain rates at �̇=0.001 and 0.002 extend from
the stable liquid branch into the two-phase solid-liquid re-
gion. Drawing an isobaric line from fp to the solid branch
identifies mp. The construction at T=0.006 yields densities
of � f =0.1299 and �m=0.131 34. On the low-density side we
calculated transitions at T=0.002, 0.004, 0.006, 0.008, and
0.0089 and the results are summarized in Table II.

B. High-density side of the solid region

On the high-density side of the solid state, where over-
lapping of particles becomes important, the GCM fluid dis-
plays reentrant melting into the stable liquid state. Contrary
to the normal case, the liquid coexisting with the solid has a
higher density than the solid. In this region we have to re-
verse our method in the sense that we have to start in the
liquid phase at higher densities and decrease the density in
order to enter the two-phase solid-liquid region. In Fig. 2 we
show the results for the high-density �reentrant melting� re-

gion for a temperature of T=0.004. The strain-rate dependent
pressure for densities ranging from �=0.5433 to 0.5424 is
shown in Fig. 2�a�. Down to a density of 0.5429 the system
is still in the liquid phase. The interesting fact in this region
is that opposite to the low-density side, the equilibrium pres-
sure jumps up to higher values for densities ��0.5428. At a
density of � f =0.5429 we find the fp. The pressure-density
projection of the results is shown in Fig. 2�b�. Again, the
curves for strain rates at �̇=0.0, 0.001, and 0.002 nearly lie
on top of each other in the liquid branch. A dashed arrow
marks the jump of the equilibrium pressure. An analogous
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TABLE II. Freezing and melting densities for the low-density and high-
density sides of the solid state of the GCM fluid obtained using the GWTS
algorithm.

T

Low-density side High-density side

� f �m �m � f

0.002 0.0761 0.078 17 0.720 97 0.7215
0.004 0.1017 0.103 57 0.541 99 0.5429
0.006 0.1299 0.131 34 0.432 79 0.4338
0.008 0.1687 0.169 60 0.332 88 0.3337
0.0089 0.2124 0.212 70 ¯ ¯

0.009 ¯ ¯ 0.256 26 0.2565
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construction of mp yields a melting density of �m

=0.541 99. On the high-density side we calculated transi-
tions at T=0.002, 0.004, 0.006, 0.008, and 0.009 and the
results are summarized in Table II.

C. The GCM phase diagram

In Fig. 3 we show our results for the solid-liquid phase
coexistence at equilibrium and compare them with the cur-
rently most accurate simulation results of Prestipino et al.12

In addition, we also show freezing thresholds19 predicted by
the Hansen–Verlet rule based on the height of the first peak
of the structure factor at freezing. Lang et al.10 established
that the phase boundaries of the GCM are well reproduced
by the Hansen–Verlet criterion. In general, the coexistence
lines are double lines, but they cannot be resolved on the
scale of the figure because the solid-liquid density gap is too
small. On the low-density side our results are in very good
agreement with those of Prestipino et al.12 The solid region
in our simulation is broader at higher temperatures
�T=0.008�. This tendency continues on the high-density side
where the melting and the freezing lines are shifted slightly
to higher densities, compared with those obtained by Presti-
pino et al.12 At almost all temperatures studied, the liquid

phase is transformed into a bcc solid. The only exception is
the low-density side at T=0.002 where the liquid phase is
transformed into a fcc solid.

Figure 4 provides a quantitative comparison of our co-
existence densities to those obtained from Prestipino et al.12

The comparison indicates that at any temperature, the dis-
crepancies between the two calculation methods are typically
less than 5%. Our results are in between the values reported
by Prestipino et al.12 and the predictions of the Hansen–
Verlet freezing rule.19

In Fig. 5 we show the solid-liquid density gap �� fm

= 
� f −�m
 on the low-density and the high-density sides de-
pending on temperature. The density gap is larger on the
low-density side. For both density sides the density differ-
ence decreases when increasing the temperature for
T
0.006. Extrapolating the density gaps to temperatures
higher than T=0.009 suggests that the two-phase solid-liquid
region disappears completely for both density sides at a com-
mon point, as predicted by Stillinger,20 with a maximum
freezing/melting temperature Tmax. We located this maximum
value at Tmax�0.009 03 for �max�0.242 65. This compares
with maximum values Tmax�0.008 74 for �max�0.239
obtained by Prestipino et al.12

IV. CONCLUSIONS

Determining solid-liquid phase transitions of the GCM
fluid is a severe test for the GWTS algorithm because the GC
model has a very small range of densities in which phase
separation can occur and it has a complex reentrant melting
scenario. Using the GWTS algorithm, the phase envelope of
the GC potential can be calculated very precisely. Our results
are consistent with that of other work.12 On the high-density
side the solid-liquid coexisting line is slightly shifted to
higher densities compared with the results of Prestipino et
al.12 The common point, predicted by Stillinger,20 where the
crystal and its melt have the same density, could be deter-
mined with high precision. The common point on the GC
envelope has not been resolved so far and a detailed analysis
will be of considerable interest. We believe that using the
GWTS algorithm can also contribute to the understanding of
other unusual phase diagram topologies.
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